Основание систем счисления

Таблицы истинности

При помощи тех же нулей и единиц создаются таблицы истинности логических выражений, в которых описаны всевозможные варианты.

Основные логические операции

Например, конъюнкция является одной из логических

Например, конъюнкция является одной из логических операций. Она является истиной только в том случае, если два высказывания имеют истинные значения.

Логические переменные таблицы истинности обозначают p и q, а их значения выражают при помощи 0 и 1, где 0 – ложь, 1 – истина:

Фрагмент таблицы истинности для конъюнкции.

Фрагмент таблицы истинности для конъюнкции.

Так выражаются условия для всех логических операций.

Применяются таблицы истинности еще с начала 20 века в алгебре, логике, программировании.

Материал для сайта был с ресурса:

Видео

Алфавит и основание системы счисления

Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например: Десятичная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Двоичная система: {0, 1} Восьмеричная система: {0, 1, 2, 3, 4, 5, 6, 7} Шестнадцатеричная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых задает количественное значение или «вес» каждого разряда. Например: Базисы некоторых позиционных систем счисления. Десятичная система: 10, 101, 102, 103, 104,…, 10n,… Двоичная система: 2, 21, 22, 23, 24,…, 2n,… Восьмеричная система: 8, 81, 82, 83, 84,…, 8n,… Пример. Десятичное число 4718,63, двоичное число 1001,1, восьмеричное число 7764,1, шестнадцатеричное число 3АF.

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.

Что такое непозиционная система

Определение

Непозиционная система — это такая система счисления, в которой положения цифры в записи числа не зависит величина, которую она обозначает.

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от ее места в коде числа.

Еще до нашей эры разные народы независимо друг от друга отказывались от унарной системы счисления, в которой количество предметов обозначали таким же количеством одинаковых значков, и переходили к более удобным системам. Например, у египтян система счисления была десятичной, но запись числа составлялась только из иероглифов 1, 10, 100, 1000. Их нужно было складывать, поэтому не имело значения, в каком порядке они записаны.

Разряд числа

Разряд — это место, позиция цифры в записи числа. Например, в 125: цифра 5 относится к разряду единиц, 2 — к разряду десятков, 5 — к разряду сотен. Данное число можно также представить в виде суммы 100 + 20 + 5 и выделить основание системы в каждом слагаемом в той или иной степени:

12510 = 1 ∙ 100 + 2 ∙ 10 + 5 ∙ 1 = 1 ∙ 102 + 2 ∙ 101 + 5 ∙ 10

Если обратить внимание на показатели степени, то наблюдается закономерность — соответствие порядковому номеру цифры слева направо, начиная с нуля:

Цифра 1 2 5
Порядковый номер слева направо 2 1
Показатель степени основания 2 1

Достоинства позиционной системы

Простое выполнение подсчета

У всех позиционных систем одни и те же алгоритмы выполнения арифметических действий. Также в позиционных системах удобно работать с дробями и отрицательными числами, которые зачастую просто невозможно представить в непозиционных системах.

Главные свойства позиционных систем:

  • основание всегда записывается внутри системы как 10 (утверждение неприменимо к унарной системе счисления);
  • числа можно сравнивать поразрядно, дополнив ведущими нулями до равной длины;
  • сложение и вычитание можно выполнять, зная только таблицу сложения однозначных чисел.

Малое количество символов в записи

Позиционные системы используют только десять арабских цифр. Системы с основанием больше десяти добавляют к цифрам 26 латинских букв. В некоторых системах используют круглые и квадратные скобки.

Чем больше основание системы счисления, тем меньшее количество цифр понадобится для записи числа. Числа, состоящие из трех разрядов в десятичной системе, могут иметь всего два разряда в шестнадцатеричной.

Двоичная система счисления

В компьютерной технике очень часто используется двоичная система счисления. Такую систему очень легко реализовать в электронике (полупроводниковые транзисторы и микросхемы), так как для неё требуется всего два устойчивых состояния (0 и 1).

Двоичная система счисления может быть непозиционной и позиционной системой. В ней используется две цифры: 0 и 1. В реальном устройстве это может быть реализовано присутствием какого-либо физического явления или его отсутствием. Например: есть электрический заряд или его нет, есть напряжение или нет, есть ток или нет, есть сопротивление или нет, отражает свет или нет, намагничено или не намагничено, есть отверстие или нет и т.п.

Мы уже знаем, как переводить числа в различные системы счисления. Посмотрим, как это происходит с двоичной системой счисления. Переведём число из двоичной системы счисления в десятичную.

;

Вы это можете проверить на программе-калькуляторе (gcalctool в gnome, Kcalc в KDE, или калькулятор в Windows). Он умеет производить расчёты в двоичной, восьмеричной и шестнадцатиричной системах счисления. Теперь вы знаете, как он это проделывает. Если вы захотите посвятить свою жизнь программированию, то вам часто придётся работать со степенями двойки. Ниже представлена таблица:

Степень Значение
1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536

Произведём обратное преобразование. Чтобы преобразовать число в десятичном виде к двоичному, нам нужно будет делить всё время на два и смотреть на остаток от деления. Возьмём число 33.

  • 33 : 2 = 16 остаток 1;
  • 16 : 2 = 8 остаток 0;
  • 8 : 2 = 4 остаток 0;
  • 4 : 2 = 2 остаток 0;
  • 2 : 2 = 1 остаток 0;
  • 1 : 2 = 0 остаток 1;

Получили .

Возьмём число 55. Посмотрим, что получится.

  • 55 : 2 = 27 остаток 1;
  • 27 : 2 = 13 остаток 1;
  • 13 : 2 = 6 остаток 1;
  • 6 : 2 = 3 остаток 0;
  • 3 : 2 = 1 остаток 1;
  • 1 : 2 = 0 остаток 1.

Получили .

Ниже приведены ещё примеры со сложением, вычитанием, умножением и делением.

Сложение:

Вычитание:

Умножение:

Деление:

Программа двоичного представления десятичного числа (Написана на Си)

Представление дробей

Если же необходимо представить в развернутой форме дробь, то формула будет следующей:

An = an-1 ∙ qn-1 + an-2 ∙ qn-2 + ∙∙∙ + a ∙ q + a-1 ∙ q-1 + ∙∙∙ + a-m ∙ q-m

где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа. Свернутой формой, соответственно, является запись вида:

±an-1an-2∙∙∙a1aa-1 ∙∙∙ a-m

Например, для 1001,101 в двоичной системе счисления развернутая форма будет выглядеть так:

1001.1012 = 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙ 2 + 1 ∙ 2-1 + 0 ∙ 2-2 + 1 ∙ 2-3

Теги